Neural Networks For
نویسنده
چکیده
The suitability of artiicial neural networks (ANNs) for detecting fault conditions in pneumatic control valve actuators is investigated. Speciically, the ability of a neural network to act as a predictor of correct valve behaviour is examined. Experimental results indicate that standard network architectures are unsuitable for temporal prediction of non-linear system behaviour. An original recurrent network architecture, designed speciically as a predictor and based on autoregres-sive models and functional approximation is therefore proposed. The performance of this network is evaluated using both measured data and data from simulations based on a mathematical model of the valve. Laboratory implementation of the fault detection system produced encouraging qualitative results, including high success rates for the detection of faults corresponding to valve Coulomb friction changes and input pressure oosets. 1. INTRODUCTION Pneumatically-actuated control valves occur frequently as a basic component of control systems in many processing and manufacturing plants. The wear and tear to which industrial control valve actuators are subjected leads to degeneration of performance and eventually to failure. In modern automated plants, an unrevealed actuator fault may have serious consequences. Although the detection of sudden failures is usually easily accomplished , this is seldom the case when deterioration is gradual. In fact, the use of feedback control to maintain desirable process operation may compensate for, and thus obscure, a developing fault.
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996